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Abstract. Homodyne detection can be used to perform measurements on various quantum states of the
light, such as conditional single photon states produced by parametric fluorescence processes. In the pulsed
regime, the time and frequency overlap between the single photon wave packet and the local oscillator field
plays a crucial role. We show in this paper that this overlap can be characterized by an effective quantum
efficiency, which is explicitly calculated in various situations of experimental interest.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 42.50.Ar Photon statistics and coherence theory
– 42.65.Re Ultrafast processes; optical pulse generation and pulse compression

1 Introduction

Photon number states (Fock states) play a fundamental
role in quantum optics, both from a conceptual point of
view — because number states provide the most conve-
nient basis for the states of the quantized electromagnetic
field [1] — and from an experimental point of view — be-
cause the generation and detection of number states pro-
vide one of the the most striking evidence for the quan-
tum nature of the light [2,3]. Beyond these fundamental
issues, it has also been realized that single photon states
(i.e. photon number states with n = 1) also play a cen-
tral role in quantum information processing: a one-photon,
two-mode state of the field is the simplest implementation
of a “qubit”, and it has been exploited with great success
as the basic tool for quantum cryptography [4].

The usual way to detect a single photon state is by pho-
ton counting, i.e. by photo-emission in a photocathode or
a semiconductor medium, followed by strong amplification
based upon an avalanche process. The specific quantum
properties of a single photon state can then be evidenced
by measuring correlation between several photodetection
events. Generation of approximate single-photon states,
obtained by controlling the emission of the source at the
single photon level, may yield “antibunching” [5,6] or “an-
ticorrelation” [3] effects. However, this direct detection
method does not give access to the full properties of a
Fock states, which by analogy with a mechanical oscilla-
tor can also be observed in the “position and momentum”
eigenbasis, and not only in the energy (photon number)
eigenbasis which is associated to photon counting. For the
electromagnetic field, the equivalent of the position and
momentum eigenbasis correspond to the quadrature am-
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Fig. 1. Homodyne detector. In a balanced homodyne detector,
the weak field Es to be measured interferes on a balanced beam
splitter B with a strong local-oscillator Elo of same frequency.
The optical intensities of the two output ports of the beam
splitter are measured with the photodetectors P1 and P2 and
substracted by the power combiner S. The output current i of
the detector is then proportional to E∗loEs + E∗s Elo.

plitudes of the electric field, and can be measured by using
homodyne detection.

In a balanced homodyne detector (see Fig. 1), the weak
field Es to be measured interferes on a balanced beam split-
ter with a strong local-oscillator Elo of same frequency.
The output current of the detector is proportional to the
difference between the optical intensities of the two out-
put ports of the beam splitter. Since these intensities are
proportional to |Elo±Es|2, their difference is proportional
to E∗loEs + E∗s Elo. The weak field Es is thus multiplied by
the strong local-oscillator field Elo, and the choice of the
relative phase between these two fields gives access to the
various quadrature amplitudes of the signal field.

In 1987, Yurke and Stoler proposed to perform an
homodyne measurement of a conditional single photon
state [7]. The production of such a state is based upon the
production of pairs of photon by spontaneous atomic [3]
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Fig. 2. Imperfect homodyne detector. An imperfect homodyne
detector of quantum efficiency η is simulated with a beam-
splitter L in the input port of a perfect homodyne detector H,
mixing the field to measure Es with vacuum EN. Its transmis-
sion coefficient t verifies |t|2 = η.

or parametric [2] fluorescence. The detection of one pho-
ton then projects the field in a single photon state, which
can then be detected by various methods. In the scheme of
reference [7], the second photon of the pair interferes with
a local oscillator (L.O.) in an homodyne detection set-up.
The measured quantity is then a quadrature amplitude
of the electric field, and its probability density should be
the same as the one of a mechanical oscillator in position
space. In particular, if the state measured is a n-photon
Fock state, this probability distribution will exhibit n+ 1
peaks and n zeros (or dark fringes) [10]. These features do
not depend on the phase setting of the homodyne detec-
tor, due to the phase-independency of the n-photon Fock
state.

However, several difficulties prevented this experiment
to be completed up to now [8]. First, it was pointed out by
Yurke and Stoler that the shape of the probability density
is extremely sensitive to the overall quantum efficiency of
the homodyne detection set-up, and that the visibility of
the fringes decreases quickly with the quantum efficiency η
of the detector. For instance, in order to separate the two
peaks of a single photon Fock state, a detection system
with a high enough global quantum efficiency (η > 1/3)
is needed.

Second, Yurke and Stoler’s approach was a single mode
calculation, which did not consider in great detail the
necessary “time vs. frequency” aspect of this experiment.
Using hand-waving arguments, it is clear that the single
photon state must be prepared in modes which overlap
perfectly the L.O. mode, both in time and in frequency: if
the timing is wrong, the homodyne detection will see vac-
uum modes rather than the expected single photon state;
if the frequency is wrong, the beat note in the signal-L.O.
interference will average to zero. Moreover, time and fre-
quency are not independent due to the Fourier transforms
(or time-energy Heisenberg relations) which relate time
and energy. An approach to these problems was provided
in reference [9], and the measurement result which can
be expected in a given experiment was computed explic-
itly. In the present paper, we will use another approach,
which gives essentially the same results, but with a differ-
ent physical picture: our goal is to hide the time-frequency
aspect of this problem under an “effective quantum effi-
ciency” ηeff , and to give a convenient formula for evalu-
ating ηeff for practical situations of interest. The advan-
tage of our approach is to provide a “translation” between

the simple single-mode model of reference [7], and a more
realistic experimental situation involving time-dependent
signals. This method will be applied to a few simple exam-
ples, which include the original Yurke and Stoler’s scheme,
as well as some more realistic conditions for parametric
fluorescence under pulsed laser excitation.

2 Effective efficiency of a pulsed homodyne
detector

2.1 Introduction

The main purpose of the calculation presented now is
to link the parameters of an imperfect single-mode ho-
modyne detector with the parameters of a pulsed ho-
modyne detector, in order to have the same probability
distribution for the detector observables when n-photon
Fock states are measured. In the single mode case ana-
lyzed in reference [7], the non-unity quantum efficiency
of the homodyne detector is modelized by using a beam-
splitter which mixes the input field mode s with an
empty mode v (see Fig. 2). The transmission and re-
flection coefficients t and r of the beam-splitter verify
|t|2 ≡ η and |t|2 + |r|2 = 1. The field measured by such a
detector is then

â = tâs + râv (1)

where the â are usual bosonic operators for the various
field modes. In the following, the following notations will
be used. When the two homodyne detectors are compared,
the expression corresponding to the imperfect homodyne
detector is written on the left and the one corresponding
to the pulsed homodyne detector on the right, the arrow
symbolizing a formal analogy between them:

monomode imperfect homodyne detector ⇐⇒
pulsed perfect homodyne detector. (2)

The definition of the Fourier transform is:

ξ(t) =
∫

dω ξ[ω]eiωt and ξ[ω] =
1

2π

∫
dt ξ(t)e−iωt (3)

and the scalar product is noted with Dirac’s formalism:

〈ξ|E〉 =
∫

dt ξ∗(t)E(t) =
∫

dωdt ξ∗(t)eiωtE [ω]

= 2π
∫

dω ξ∗[ω]E [ω]. (4)

The field states and the measurement operator are defined
in Section 2.2. A formal analogy for Fock-states between
the two models is found in Section 2.3 and is general-
ized to more generic field states and imperfect detectors
in Section 2.4.
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2.2 Input field state and measurement operators

2.2.1 Input field state

In order to compare a Fock state |n〉 of the monomode field
to the correspondent n-photon wave packet |ψn〉, we look
for the “wave-packet annihilation operator” Âs, analog to
the monomode input channel annihilation operator âs. It
should verify

|n〉 =
â†ns√
n!
|0〉 ⇐⇒ |ψn〉 =

Â†ns√
n!
|0〉, (5)

|0〉 being the vacuum state of the field in both case.
Since the field operator of the input channel of the

pulsed homodyne detector is Ê(t) =
∫

dω eiωtâω, we can
assume

â†s ⇐⇒ Â†s =
∫

dt ξ(t)Ê†(t)√
2π〈ξ|ξ〉

=

√
2π
〈ξ|ξ〉

∫
dω ξ[ω]â†ω, (6)

the function ξ defining the wave packet envelope. The√
2π/〈ξ|ξ〉 prefactor is needed to fulfill the standard com-

mutation relation [Âs, Â
†
s ] = 1.

2.2.2 Homodyne measurement operators

In both homodyne detectors, the local oscillator field Elo
will be quasi-classical and much greater than the mea-
sured field (〈Elo〉 � 〈â†â〉1/2 or 〈Ê†Ê〉1/2) and therefore
assumed to be classical, i.e. defined by a complex number
commuting with itself. The imperfect monomode homo-
dyne detector is modelized by a perfect detector measur-
ing a mixture of the input mode and an empty mode, as
defined by equation (1).

The local oscillator field of the pulsed homodyne de-
tector, Elo(t), varies too quickly to be followed by the pho-
todetectors, and we will only be able to measure integrals
over the pulse duration. The terms to be related are thus:

E∗loâ⇐⇒
∫

dt E∗lo(t)Ê(t) = 2π
∫

dω E∗lo[ω]âω, (7)

where â is the mixed field defined in equation (1).
The observables ı̂ and Î of the current in the output

port of these homodyne detectors are then

ı̂ = E∗loâ+ Eloâ† ⇐⇒

Î = 2π
(∫

dω E∗lo[ω]âω +
∫

dω Elo[ω]â†ω

)
. (8)

2.3 Correspondence between the imperfect monomode
and the perfect pulsed homodyne detectors

2.3.1 Moment operators

We want the observables ı̂ and Î to have the same prob-
ability distribution. We therefore need to have the same

moments 〈Îp〉 and 〈̂ıp〉 for every integer p. This condition
is sufficient because the equality of the Fourier transforms
〈eiΩÎ〉 and 〈eiΩı̂〉 of the probability distribution of the ob-
servables follows straightforwardly.

To find this pth moment for any n-photons Fock state
and for both detectors, we can define “moment operators”
ı̃p,n and Ĩp,n as follows:

〈n|̂ıp|n〉 ≡ 〈0|̃ıp,n|0〉⇐⇒〈ψn|Îp|ψn〉≡〈0|Ĩp,n|0〉 (9)

ı̃p,n =
1
n!
âns
[
E∗loâ+ Eloâ†

]p
â†ns ⇐⇒

Ĩp,n=
[2π]p

n!
Âns

[∫
dω E∗lo[ω]âω+

∫
dω Elo[ω]â†ω

]p
Â†ns . (10)

The bracketed expressions should be expanded to calcu-
late the mean-value of these operators in vacuum. This
development should be the same for both homodyne de-
tectors, up to the analogy (7). In order to simplify the
calculations of the average values, the annihilation and
creation operators can be rewritten in normal order. The
two results will be easily related by comparison of the
multiplicative coefficients.

2.3.2 Commutators

In order to rewrite the above expressions in normal order
without writing explicitly all terms, it is actually enough
to realize that they can be obtained from the following
commutators:[
E∗loâ, Eloâ†

]
= E∗loElo ⇐⇒[

2π
∫

dω E∗lo[ω]âω, 2π
∫

dω Elo[ω]â†ω

]
= 2π〈Elo|Elo〉 (11)

[
E∗loâ, â†s

]
= E∗lot⇐⇒[

2π
∫

dω E∗lo[ω]âω, Â†s

]
=
√

2π
〈Elo|ξ〉√
〈ξ|ξ〉

· (12)

Because of the similarly of the precedent developments,
similar commutators appear at the same place with the
same coefficients in both developments.

We can thus link the parameters of the two kind of ho-
modyne detectors discussed here using equations (11, 12):

E∗lot t∗Elo ⇐⇒ 2π
〈Elo|ξ〉〈ξ|Elo〉
〈ξ|ξ〉 (13)

|t|2 ≡ η ⇐⇒ 〈Elo|ξ〉〈ξ|Elo〉〈Elo|Elo〉〈ξ|ξ〉
=

|〈Elo|ξ〉|2
〈Elo|Elo〉〈ξ|ξ〉

(14)

t⇐⇒ 〈Elo|ξ〉√
〈Elo|Elo〉〈ξ|ξ〉

· (15)

These expressions show us how to find the parameters
of an imperfect monomode homodyne detector in order
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to have the same moment operator development than a
given pulsed homodyne detector, i.e.

|Elo|2 = 2π〈E∗lo|Elo〉 [Eq. (11)]

and η =
|〈Elo|ξ〉|2
〈Elo|Elo〉〈ξ|ξ〉

[Eq. (14)]

(or t =
〈Elo|ξ〉√
〈Elo|Elo〉〈ξ|ξ〉

[Eq. (15)]).

2.3.3 Calculation of the average value

If the substitutions discussed in the precedent paragraph
are made, we have two strictly analog normal order op-
erator development. Their mean value in the vacuum will
only have terms like

[E∗loâ]k [âs]
l |0〉 = δk,0 δl,0|0〉 ⇐⇒[
2π
∫

dω E∗lo[ω]âω

]k [
Âs

]l
|0〉 = δk,0 δl,0|0〉 (16)

and their hermitian conjugate. Since these last analog
terms are equal and preceded by identical complex co-
efficients, both mean values are equal:

〈0|̃ıp,n|0〉 = 〈0|Ĩp,n|0〉 i.e. 〈n|̂ıp|n〉 = 〈ψn|Îp|ψn〉, (17)

for every integer p.
Since all their moments are equal, the two probabil-

ity distributions are identical: a pulsed homodyne detec-
tor measuring a n-photons wave-packet is equivalent to
a monomode imperfect homodyne detector measuring a
n-photons Fock state with an efficiency given by

ηeff =
|〈Elo|ξ〉|2
〈Elo|Elo〉〈ξ|ξ〉

, (18)

corresponding to a temporal mode-matching between the
local-oscillator envelope and the wave-packet shape.

2.4 Generalization

2.4.1 Other quantum states

If the measured state is not a Fock state but a linear
combination of the |ψn〉’s, the equivalence between the
two kind of homodyne detectors holds on since ηeff is not
n-dependent. It also holds for non-coherent combinations
of such pure states.

However, the wave-packet shape ξ gives the value of
ηeff . Therefore, homodyne measurement of a coherent su-
perposition of diversely shaped wave packets is more com-
plicated to describe, because several temporal modes are
involved and will not be considered here.

2.4.2 Non-perfect pulsed homodyne detector

Beyond the time-frequency aspects which were considered
up to now, homodyne detectors have usually various other
defects, related to non-perfect detector efficiency, imper-
fect wave-front matching... These imperfections can be
modelized by introducing losses from a fictitious beam
splitter, in the same way as as for monomode homodyne
detectors. The measured field is then Â = τÂs + ρÂN,
where |τ | = √ηloss, and |τ |2 + |ρ|2 = 1. The relevant com-
mutator relation is then[

1
2π

∫
dω E∗lo[ω]âω, Â†

]
= τ∗

[
1

2π

∫
dω E∗lo[ω]âω, Â†s

]
(19)

and the total efficiency ηtot becomes

ηtot = |τ |2 |〈Elo|ξ〉|2
〈Elo|Elo〉〈ξ|ξ〉

= ηlossηeff . (20)

The effective total efficiency of an imperfect pulsed ho-
modyne detector is thus the product of the loss induced
efficiency and the pulse-induced effective efficiency.

3 Evaluations of the effective quantum
efficiency

3.1 Continuous experiment

Yurke and Stoler [7] proposed to measure the probability
distribution of a single-photon using continuously pumped
parametric down-conversion medium and a gated homo-
dyne detector. The input channel is opened for a duration
δT only when a photon in the idler beam is detected. This
is equivalent to a square-pulsed homodyne detector with
a local oscillator field envelope defined by

Elo(t) =


1√
δT

if |t| < δT

2

0 if |t| ≥ δT

2

(21)

where Elo is normalized according to 〈Elo|Elo〉 =∫
dt |Elo|2 = 1. The idler photon frequency ωi is selected

with a monochromator of width δωi (see Fig. 3). In this
scheme the pump and the local oscillator are initially c.w.
lasers, and their linewidths are supposed small compared
to the spectral widths δωi and 1/δT . On the other hand,
the phase matching bandwidth of the non-linear crystal
is assumed to be very broad compared to the same spec-
tral widths. Since the down-conversion process fulfills the
energy conservation relation ωs + ωi = ωp, where ωp is
the pump frequency, and ωs, ωi are the signal and idler
frequencies, ωs will be defined with the same precision as
ωi, and one has δωs = δωi. The signal wave packet in the
frequency domain is thus:

ξ[ωs] =


1√

2π δωi

if |ωs| <
δωi

2

0 if |ωs| ≥
δωi

2
,

(22)
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Fig. 3. Single-photon field measurement. The two correlated
beams Ei and Es are produced by parametric-down conversion
of the pump-beam Ep in a χ(2) non-linear medium. The detec-
tion of a photon in the idler-beam Ei by the avalanche photo-
diode (or photomultiplier) T triggers the gate G and thus the
measurement of the signal-beam Es by the homodyne detector
H. The role of the monochromator M is discussed in the text.

and is also normalized according to 〈ξ|ξ〉 =
2π
∫

dω |ξ[ω]|2 = 1.
The best achievable efficiency ηopt can then be ob-

tained by calculating the scalar product 〈ξ|Elo〉. It is con-
venient to define the new variables x = ω δT/2π and
X = δωi δT/2π. The effective efficiency ηeff(X) is then
easy to compute, since Elo and ξ are normalized, and we
obtain:

ηeff(X) =
1
X

∣∣∣∣∣
∫ X

2

−X2
dx sinc (πx)

∣∣∣∣∣
2

=
4
X

∣∣∣∣∣
∫ X

2

0

dx sinc (πx)

∣∣∣∣∣
2

.

(23)

The behaviour of this quantity is shown in Figure 4.
Numerical calculations shows that the optimal value of
ηeff(X) is ηopt = 82.5%, when X = 1.37. Even a perfect
homodyne detector with an optimal pulse duration has
17.5% extra-losses in a continuous regime.

In order to evaluate some orders of magnitude, one
may consider filtering the idler with a good grating
monochromator or interference filter, which gives δλ =
0.1 nm. The linewidth and time window are then δωi =
2πcδλ/λ2 and δT = 2πX/δωi = Xλ2/c δλ. With near in-
frared photons (λ = 1 µm) the optimal gate duration for
δλ = 0.1 nm is δTopt = 45 ps. This time is too small to be
obtained by using an electronic gate. One might thus use
narrower filters, based on Fabry-Perot resonators, but in
any case the present scheme will be limited by the rather
stringent matching which is required between δωi and δT .
We will see now that the required condition is much easier
to fulfill by using a pulsed local oscillator.

3.2 Pulsed experiment

3.2.1 General features

In the pulsed regime, it is possible to use pump pulses
short enough, so that their linewith δωp becomes greater
than the monochromator linewidth δωi. Then the energy
conservation relation ωp = ωi +ωs yields δωs = δωp. If the
pump pulses are frequency-doubled local-oscillator pulses,
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Fig. 4. Effective quantum efficiency ηeff(X) for a “chopped”
continuous experiment. The value of ηeff (X) obtained from
equation (23) is plotted as a function of X = δωi δT/2π.

the photon wavepacket and the L.O. will have approxi-
mately the same linewidth, and it will be much easier to
get a good overlap between them. Another advantage of
a pulsed scheme is that the arrival time window of the
wave-packet is known, which allows one to discard many
“dark counts” of the triggerring photon counter. A pulsed
experiment has thus no fundamental limitation of the ef-
fective efficiency ηeff since the measured wave-paket and
the local oscillator envelope could overlap perfectly.

In order to evaluate explicitly the single photon
wavepacket, we will describe here the quantum state of
the correlated beams i and s out of the nonlinear medium.
If the χ(2) medium is pumped with a field Ep(t) =
Ep(t)e−2iω0t, the interaction hamiltonian in the crystal is:

Ĥ(t) = ~Ep(t)e−2iω0tÊ†s (t)Ê†i (t) + H.C. (24)

= ~Ep(t)
∫

dωdω′ei(ω+ω′−2ω0)tâ†sωâ
†
iω′+H.C., (25)

where the χ(2) coefficient is “hidden” in the pump en-
veloppe. At the first order of a perturbation theory, and
assuming very large phase-matching bandwidth and very
small group velocity dispersion and mismatch, the field
state is

|ψ(t)〉 '
[
1 +

1
i~

∫ t

0

dt′Ĥ(t′)
]
|0〉 (26)

' |0〉 − i
∫

dωdω′ |s, ω:1〉

⊗|i, ω′:1〉
∫ t

0

dt′ Ep(t′)ei(ω+ω′−2ω0)t′ . (27)

If the idler-monochromator is narrower than the pulse
linewidth, and centered in the L.O. frequency ω0, the
field state is projected onto |i, ω0:1〉 when a photon is de-
tected in the monochromated idler beam, and the field
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state becomes

|ψs(t)〉 = α〈i, ω0:1|ψ(t)〉 (28)

' −iα
∫

dω |s, ω:1〉
∫ t

0

dt′ Ep(t′)ei(ω−ω0)t′ (29)

where α is a normalization coefficient. In practice, we
will be interested in the field state after the pump went
through the crystal. If the group velocity mismatch is
small enough and the crystal long enough, this corre-
sponds to taking the limit of very large t in the above
equation, and the final field state can be written:

|ψs〉 ' −
i√

2π〈Ep|Ep〉

∫
dω Ep[ω0 − ω]|s, ω:1〉. (30)

The photon wave-packet has therefore the same width as
the pump envelope:

ξ[ω] = αEp[ω0 − ω]. (31)

In a real non-linear medium, one has to take the group
velocity mismatch and the group velocity dispersion into
account. The first one increases the generated photon wave
packet duration and the latter induces a frequency chirp.
One should also not forget the finiteness of the nonlinear
crystal, that broaden the phase-matching condition and
the wave-packet spectral width. These effects can be in-
cluded in the expression of ξ, changing the scalar product
〈ξ|Elo〉 and the effective efficiency ηeff of the homodyne
detection.

3.2.2 Explicit calculations for Gaussian pulses

For an explicit result, we assume that the local-oscillator
pulse envelope Elo(t) is Gaussian-shaped, and that the
pump field is the frequency-doubled local-oscillator. The
phase-matching bandwidth is assumed to be much larger
than the pulses bandwidths, and the two envelopes are
normalized according to 〈Elo|Elo〉 = 〈Ep|Ep〉 = 1. The pulse
shapes are thus

Elo(t) =
2

1
4

√
δT π

1
4

e−
t2

δT2

and Ep(t) = αE2
lo(t) =

√
2√

δT π
1
4

e−
2t2

δT2 . (32)

We obtain then, using equation (31),

〈Elo|ξ〉 = 〈Elo|Ep〉 =
2

3
4

δT
√
π

∫
dt e−

3t2

δT2 =
2

3
4

√
3

(33)

and

ηeff =
|〈Elo|ξ〉|2
〈Elo|Elo〉〈ξ|ξ〉

=
2
√

2
3
' 94.3%. (34)

This effective efficiency is very high, but holds only for
Gaussian pulses, without any dispersive effect of the non-
linear medium.

For these calculations to be valid, the monochroma-
tor linewidth δλi should be smaller than the signal wave-
packet linewidth. Using the same conditions as in the
previous section (λs = 1 µm, δλi = 0.1 nm), we obtain
δTp � 30 ps. We need therefore to be in the subpicosec-
ond (or few picoseconds) regime.

3.2.3 More general idler-monochromator

The above calculations can be easily generalized to include
a finite linewidth δωi of the monochromator. The field

state is then projected onto
∫ δωi

2

− δωi
2

dδω|i, ω0 + δω:1〉, and:

|ψs(t)〉 = α

∫ δωi
2

− δωi
2

dδω〈i, ω0 + δω:1|ψ(t)〉 (35)

' −iα
∫

dω |s, ω:1〉
∫ t

0

dt′ Ep(t′)

×
∫ δωi

2

− δωi
2

dδω ei(ω−ω0+δω)t′ . (36)

Taking again the long-time limit for t, the quantum state is

|ψs〉 ' −iα
∫

dω
∫ δωi

2

− δωi
2

dδω Ep[ω0 − ω − δω]|s, ω:1〉 (37)

and

ξ[ω] ' −iα
∫ δωi

2

− δωi
2

dδω Ep[ω0 − ω − δω]. (38)

The calculations can again be carried out explicitly for
Gaussian pulses, and by using the variables x = δω δT/2π
and X = δωi δT/2π as previously, one obtains:

〈Elo|ξ〉 =
−2

3
4 i√

3X

∫ X
2

−X2
dx e−

π2x2
3 . (39)

Since Elo and ξ are normalized, the effective efficiency is
thus

ηeff(X)=
2
√

2
3X2

∣∣∣∣∣
∫ X

2

−X2
dx e−

π2x2
3

∣∣∣∣∣
2

=
8
√

2
3X2

∣∣∣∣∣
∫ X

2

0

dx e−
π2x2

3

∣∣∣∣∣
2

.

(40)

The behaviour of this quantity is now shown in Figure 5.
Numerical calculations shows that ηeff > 90% for X <
0.29 and ηeff > 50% for X < 1.16. Since δT = Xλ2/c δλ
the pulse duration needed to have a given effective effi-
ciency can be calculated easily. With near infrared photons
(λ = 1 µm) and a monochromator resolution δλ = 0.1 nm,
this pulse duration is δT90 ≈ 10 ps for a 90% effective ef-
ficiency and δT50 ≈ 40 ps for 50% efficiency. Obviously
shorter (or longer) values will be obtained by broadening
(or narrowing) the filtering linewidth.
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Fig. 5. Effective quantum efficiency ηeff (X) for a pulsed ex-
periment with Gaussian-shaped pulses. The value of ηeff(X)
obtained from equation (40) is plotted as a function of X =
δωi δT/2π.

4 Conclusion

In order to describe the homodyne detection of conditional
single photon state, we have defined an “effective quantum
efficiency” which appears as the normalized scalar prod-
uct of the single photon and local oscillator wavepackets.

We have shown that this effective quantum efficiency is a
useful tool to evaluate and compare various experimental
possibilities which are under consideration for realizing
pulsed homodyne detection experiments.

This work was carried out in the framework of the european
IST/FET/QIPC project “QUICOV”.
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